Capturing Tissue Repair in Zebrafish Larvae with Time-lapse Brightfield Stereomicroscopy

نویسندگان

  • Thomas S. Lisse
  • Elizabeth A. Brochu
  • Sandra Rieger
چکیده

The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse video brightfield stereomicroscopy. We demonstrate that fin amputation triggers a contraction of the amputation wound and extrusion of cells around the wound margin, leading to their subsequent clearance. Fin regeneration proceeds from proximal to distal direction after a short delay. In addition, developmental growth of the larva can be observed during all stages. The presented method provides an opportunity for observing and analyzing whole tissue-scale behaviors such as fin development and growth in a simple microscope setting, which is easily adaptable to any stereomicroscope with time-lapse capabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles

The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...

متن کامل

Histopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles

The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...

متن کامل

Motor nerve transection and time-lapse imaging of glial cell behaviors in live zebrafish.

The nervous system is often described as a hard-wired component of the body even though it is a considerably fluid organ system that reacts to external stimuli in a consistent, stereotyped manner, while maintaining incredible flexibility and plasticity. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) is capable of significant repair, but we have only just begun to u...

متن کامل

Damage-induced reactive oxygen species regulate vimentin and dynamic collagen-based projections to mediate wound repair

Tissue injury leads to early wound-associated reactive oxygen species (ROS) production that mediate tissue regeneration. To identify mechanisms that function downstream of redox signals that modulate regeneration, a vimentin reporter of mesenchymal cells was generated by driving GFP from the vimentin promoter in zebrafish. Early redox signaling mediated vimentin reporter activity at the wound m...

متن کامل

Zebrafish Brain Ventricle Injection

Proper brain ventricle formation during embryonic brain development is required for normal brain function. Brain ventricles are the highly conserved cavities within the brain that are filled with cerebrospinal fluid. In zebrafish, after neural tube formation, the neuroepithelium undergoes a series of constrictions and folds while it fills with fluid resulting in brain ventricle formation. In or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015